Bilston Church of England Primary School

Calculation policy, LOWER KS2

We will aspire through our Christian beliefs and attitudes for all children in our care to flourish both academically and personally; develop respect for others and to reach out to their local and global communities, so, 'hand in hand together with faith we will strive to achieve all things...

I am able to do all things through him (Jesus) who strengthens me.'
Adopted by Governors 2022 Curriculum Leader- M Johnson

KEY STACE 2

In Years 3 and 4, children develop the basis of written methods by building their skills alongside a deep understanding of place value. They should use known addition/subtraction and multiplication/division facts to calculate efficiently and accurately, rather than relying on counting. Children use place value equipment to support their understanding, but not as a substitute for thinking.
Key language: partition, place value, tens, hundreds, thousands, column method, whole, part, equal groups, sharing, grouping, bar model

Addition and subtraction: In Year 3 especially, the column

 methods are built up gradually. Children will develop their understanding of how each stage of the calculation, including any exchanges, relates to place value. The example calculations chosen to introduce the stages of each method may often be more suited to a mental method. However, the examples and the progression of the steps have been chosen to help children develop their fluency in the process, alongside a deep understanding of the concepts and the numbers involved, so that they can apply these skills accurately and efficiently to later calculations. The class should be encouraged to compare mental and written methods for specific calculations, and children should be encouraged at every stage to make choices about which methods to apply.In Year 4, the steps are shown without such fine detail, although children should continue to build their understanding with a secure basis in place value. In subtraction, children will need to develop their understanding of exchange as they may need to exchange across one or two columns.
By the end of Year 4, children should have developed fluency in column methods alongside a deep understanding, which will allow them to progress confidently in upper Key Stage 2.

Multiplication and division: Children build a solid grounding in times-tables, understanding the multiplication and division facts in tandem. As such, they should be as confident knowing that 35 divided by 7 is 5 as knowing that 5 times 7 is 35 .
Children develop key skills to support multiplication methods unitising, commutativity, and how to use partitioning effectively. Unitising allows children to use known facts to multiply and divide multiples of 10 and 100 efficiently. Commutativity gives children flexibility in applying known facts to calculations and problem solving. An understanding of partitioning allows children to extend their skills to multiplying and dividing 2- and 3-digit numbers by a single digit
Children develop column methods to support multiplications in these cases.
For successful division, children will need to make choices about how to partition. For example, to divide 423 by 3 , it is effective to partition 423 into 300, 120 and 3, as these can be divided by 3 using known facts.
Children will also need to understand the concept of remainder, in terms of a given calculation and in terms of the context of the problem.

Fractions: Children develop the key concept of equivalent fractions, and link this with multiplying and dividing the numerators and denominators, as well as exploring the visual concept through fractions of shapes. Children learn how to find a fraction of an amount, and develop this with the aid of a bar model and other representations alongside
in Year 3, children develop an understanding of how to add and subtract fractions with the same denominator and find complements to the whole. This is developed alongside an understanding of fractions as numbers, including fractions greater than I. In Year 4, children begin to work with fractions greater than I.
Decimals are introduced, as tenths in Year 3 and then as hundredths in Year 4. Children develop an understanding of decimals in terms of the relationship with fractions, with dividing by 10 and 100 , and also with place value.

Year 3							
	Concrete	Pictorial	Abstract				
Year 3							
Addition							

Power Maths © Pearson 2019
Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited.
Understanding 100 s

		$3+4=7$ 3 hundreds +4 hundreds $=7$ hundreds $300+400=700$	
3-digit number + Is, no exchange or bridging	Use number bonds to add the Is. $2 / 4+4=?$ Now there are $4+4$ ones in total. $4+4=8$ $214+4=218$	Use number bonds to add the Is. Use number bonds to add the ls. $5+4=q$ $\begin{aligned} & 245+4 \\ & 5+4=9 \\ & 245+4=249 \end{aligned}$	Understand the link with counting on. $245+4$ Use number bonds to add the Is and understand that this is more efficient and less prone to error. $245+4=?$ 1 will add the $1 s$. $5+4=9$ So, $245+4=249$
3-digit number + Is with exchange	Understand that when the Is sum to 10 or more, this requires an exchange of $I O$ ones for 1 ten. Children should explore this using unitised objects or physical apparatus.	Exchange IO ones for I ten where needed. Use a place value grid to support the understanding.	Understand how to bridge by partitioning to the Is to make the next IO.

	$234+50$ There are 3 tens and 5 tens altogether. $3+5=8$ In total there are 8 tens. $234+50=284$	 5 tens +3 tens $=8$ tens $351+30=381$	1 know that $5+4=9$ So, $\begin{aligned} & 50+40=90 \\ & 753+40=793 \end{aligned}$
3-digit number + $10 s$, with exchange	Understand the exchange of 10 tens for I hundred. \square	Add by exchanging 10 tens for I hundred. $184+20=?$ $184+20=204$	Understand how the addition relates to counting on in IOs across IOO. $184+20=?$ I can count in 10 s ... $194 \ldots 204$ $184+20=204$ Use number bonds within 20 to support efficient mental calculations. $385+50$ There are 8 tens and 5 tens. That is 13 tens. $\begin{aligned} & 385+50=300+130+5 \\ & 385+50=435 \end{aligned}$

3-digit number + 2digit number	Use place value equipment to make and combine groups to model addition.	Use a place value grid to organise thinking and adding of Is , then 10 s .	Use the vertical column method to represent the addition. Children must understand how this relates to place value at each stage of the calculation.
3-digit number + 2digit number. exchange required	Use place value equipment to model addition and understand where exchange is required. Use place value counters to represent $154+72$. Use this to decide if any exchange is required. There are 5 tens and 7 tens. That is 12 tens so 1 will exchange.	Represent the required exchange on a place value grid using equipment. $275+16=?$ $275+16=291$ Note: In this example, a mental method may be more efficient. The numbers for the example calculation have been chosen to allow children to visualise the concept and see how the method relates to place value. Children should be encouraged at every stage to select methods that are accurate and efficient.	Use a column method with exchange. Children must understand how the method relates to place value at each stage of the calculation. $275+16=291$

3－digit number＋3－ digit number，no exchange	Use place value equipment to make a representation of a calculation．This may or may not be structured in a place value grid． $326+54 /$ is represented as：	Represent the place value grid with equipment to model the stages of column addition．	Use a column method to solve efficiently，using known bonds．Children must understand how this relates to place value at every stage of the calculation．
3－digit number＋3－ digit number． exchange required	Use place value equipment to enact the exchange required． There are 13 ones． I will exchange 10 ones for I ten．	Model the stages of column addition using place value equipment on a place value grid． （器㗊品）	Use column addition，ensuring understanding of place value at every stage of the calculation． $\begin{array}{r} H \mathrm{~T} O \\ \hline 1 \begin{array}{r} 2 \\ 6 \end{array} \\ +2 \quad 7 \\ \hline 4 \quad 3 \\ \hline \square 1 \end{array}$ $$ $126+217=343$ Note：Children should also study examples where exchange is required in more than one column，for example $185+318=$ ？

Representing addition problems, and selecting appropriate methods	Encourage children to use their own drawings and choices of place value equipment to represent problems with one or more steps. These representations will help them to select appropriate methods.	Children understand and create bar models to represent addition problems. $275+99=?$ $275+99=374$	Use representations to support choices of appropriate methods. I will add 100, then subtract I to find the solution. $128+105+83=?$ 1 need to add three numbers.$128+105=233$316 233 83
Year 3 Subtraction			
Subtracting 100s	Use known facts and unitising to subtract multiples of IOO. $\begin{aligned} & 5-2=3 \\ & 500-200=300 \end{aligned}$	Use known facts and unitising to subtract multiples of 100. $\begin{aligned} & 4-2=2 \\ & 400-200=200 \end{aligned}$	Understand the link with counting back in 100 s. Use known facts and unitising as efficient and accurate methods. 1 know that $7-4=3$. Therefore, 1 know that $700-$ $400=300$.

3－digit number－Is， no exchange	Use number bonds to subtract the Is． $214-3=?$ 10 LOLLIES $\begin{aligned} & 4-3=1 \\ & 214-3=211 \end{aligned}$	Use number bonds to subtract the Is．			Understand the link with counting back using a number line． Use known number bonds to calculate mentally． $476-4=?$
		H	T	0	
				$\begin{aligned} & \text { 品 } \\ & \text { 品 } \\ & \text { 品 } \end{aligned}$	
		3	I	9	
		$319-4=?$			$\begin{aligned} & 6-4=2 \\ & 476-4=472 \end{aligned}$
		H	T	0	
			自		
		3	1	9	
		$\begin{aligned} & 9-4=5 \\ & 319-4=315 \end{aligned}$			
3－digit number－Is， exchange or bridging required	Understand why an exchange is necessary by exploring why I ten must be exchanged． Use place value equipment．	Represent the required exchange on a place value grid．$151-6=?$			Calculate mentally by using known bonds．$151-6=?$$151-1-5=145$
		H	T	0	
		\＃\＃\＃\＃\＃	贔䚋		
		H	T	0	
		\＃\＃\＃	闝		

3-digit number IOs, no exchange	Subtract the IOs using known bonds. $381-10=?$ 8 tens with / removed is 7 tens.	Subtract the IOs using known bonds.			Use known bonds to subtract the IOs mentally.
		H	T		$372-50=?$
					$70-50=20$ So, $372-50=322$
		$\begin{aligned} & 8 \text { tens }-1 \text { ten }=7 \text { tens } \\ & 381-10=371 \end{aligned}$			
3-digit number IO s, exchange or bridging required	Use equipment to understand the exchange of I hundred for 10 tens.	Represent the exchange on a place value grid using equipment.			Understand the link with counting back on a number line. Use flexible partitioning to support the calculation.
		H	T	0	$235-60=?$
			目	I	
		I need to exchan subtract 2 ten	/ hundred	10 tens, to help	
		H	T	0	$235-60=100+70+5$
		$210-20=190$			

Representing subtraction problems		Use bar models to represent subtractions. 'Find the difference' is represented as two bars for comparison. Team A Team B Bar models can also be used to show that a part must be taken away from the whole.	Children use alternative representations to check calculations and choose efficient methods. Children use inverse operations to check additions and subtractions. The part-whole model supports understanding. I have completed this subtraction. $525-270=255$ I will check using addition. $\begin{array}{r} H \quad T \quad \\ \hline 270 \\ +255 \\ \hline 535 \\ \hline \end{array}$
Year 3 Multiplication			
Understanding equal grouping and repeated addition	Children continue to build understanding of equal groups and the relationship with repeated addition. They recognise both examples and non-examples using objects. Children recognise that arrays can be used to model commutative multiplications.	Children recognise that arrays demonstrate commutativity. This is 3 groups of 4 . This is 4 groups of 3 .	Children understand the link between repeated addition and multiplication. 8 groups of 3 is 24 . $\begin{aligned} & 3+3+3+3+3+3+3+3=24 \\ & 8 \times 3=24 \end{aligned}$ A bar model may represent multiplications as equal groups.

	I can see 3 groups of 8 . I can see 8 groups of 3 .		6×4	4	4	4	4	4
Using commutativity to support understanding of the times-tables	Understand how to use times-tables facts flexibly. \square \square There are 6 groups of 4 pens. There are 4 groups of 6 bread rolls. I can use $6 \times 4=24$ to work out both totals.	Understand how times-table facts relate to commutativity. 0000 0000 0000 0000 $\begin{aligned} & 6 \times 4=24 \\ & 4 \times 6=24 \end{aligned}$	Under commu 1 need I know so, 1 k 4 grou and 7 grou	how ty. rk	$s \text {-to }$ group	acts 7.		
Understanding and using $\times 3, \times 2, \times 4$ and $\times 8$ tables.	Children learn the times-tables as 'groups of', but apply their knowledge of commutativity.	Children understand how the $\times 2, \times 4$ and $\times 8$ tables are related through repeated doubling.	Children understand the relationship between related multiplication and division facts in known times-tables.					

	I can use the $\times 3$ table to work out how many keys. I can also use the $\times 3$ table to work out how many batteries.		-•••• $\begin{aligned} & 2 \times 5=10 \\ & 5 \times 2=10 \\ & 10 \div 5=2 \\ & 10 \div 2=5 \end{aligned}$
Using known facts to multiply 1Os, for example 3×40	Explore the relationship between known times-tables and multiples of 10 using place value equipment. Make 4 groups of 3 ones. Make 4 groups of 3 tens. What is the same? What is different?	Understand how unitising IOs supports multiplying by multiples of IO. 4 groups of 2 ones is 8 ones. 4 groups of 2 tens is 8 tens. $\begin{aligned} & 4 \times 2=8 \\ & 4 \times 20=80 \end{aligned}$	Understand how to use known times-tables to multiply multiples of IO. $\begin{aligned} & 4 \times 2=8 \\ & 4 \times 20=80 \end{aligned}$
Multiplying a 2-digit number by a I-digit number	Understand how to link partitioning a 2-digit number with multiplying. Each person has 23 flowers.	Use place value to support how partitioning is linked with multiplying by a 2-digit number. $3 \times 24=?$	Use addition to complete multiplications of 2-digit numbers by a I-digit number. $4 \times 13=?$

Power Maths © Pearson 2019
Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited.

	Each person has 2 tens and 3 ones. There are 3 groups of 2 tens. There are 3 groups of 3 ones. Use place value equipment to model the multiplication context. There are 3 groups of 3 ones. There are 3 groups of 2 tens.	$3 \times 4=12$ $\begin{aligned} & 3 \times 20=60 \\ & 60+12=72 \\ & 3 \times 24=72 \end{aligned}$	$\begin{aligned} & 4 \times 3=12 \\ & 12+40=52 \\ & 4 \times 13=52 \end{aligned}$
Multiplying a 2-digit number by a I-digit number.	Use place value equipment to model how 10 ones are exchanged for a 10 in some multiplications. $3 \times 24=?$	Understand that multiplications may require an exchange of Is for 10 s , and also 10 s for 100 s . $4 \times 23=?$	Children may write calculations in expanded column form, but must understand the link with place value and exchange.

Power Maths © Pearson 2019
Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited.

	$\\|\\|\\|\\|\\|\\|\\|\\|\\| \square \square$ There are 13 sticks in total. There are 3 groups of 4 , with 1 remainder.	 $22 \div 5=4$ remainder 2	$\begin{aligned} & 3 \times 5=15 \\ & 4 \times 5=20 \\ & 5 \times 5=25 \ldots \text { this is larger than } 22 \\ & \text { So, } 22 \div 5=4 \text { remainder } 2 \end{aligned}$
Using known facts to divide multiples of IO	Use place value equipment to understand how to divide by unitising. Make σ ones divided by 3 . Now make σ tens divided by 3 . What is the same? What is different?	Divide multiples of 10 by unitising. 12 tens shared into 3 equal groups. 4 tens in each group.	Divide multiples of 10 by a single digit using known times-tables. $\begin{aligned} & 180 \div 3=? \\ & 180 \text { is } 18 \text { tens. } \end{aligned}$ 18 divided by 3 is 6 . 18 tens divided by 3 is 6 tens. $\begin{aligned} & 18 \div 3=6 \\ & 180 \div 3=60 \end{aligned}$
2-digit number divided by I-digit number, no remainders	Children explore dividing 2-digit numbers by using place value equipment. \square W111T1T WाIT1T $48 \div 2=?$ First divide the 10 s.	Children explore which partitions support particular divisions. I need to partition 42 differently to divide by 3 .	Children partition a number into $10 s$ and I_{s} to divide where appropriate. $\begin{aligned} 60 \div 2 & =30 \\ 8 \div 2 & =4 \\ 30+4 & =34 \\ 68 \div 2 & =34 \end{aligned}$ Children partition flexibly to divide where appropriate. $42 \div 3=?$

	Then divide the $/ s$. 日昭 ם	$\begin{aligned} & 42=30+12 \\ & 42 \div 3=14 \end{aligned}$	$42=40+2$ I need to partition 42 differently to divide by 3. $42=30+12$ $30 \div 3=10$ $12 \div 3=4$ $\begin{aligned} & 10+4=14 \\ & 42 \div 3=14 \end{aligned}$
2-digit number divided by I-digit number, with remainders	Use place value equipment to understand the concept of remainder. Make 29 from place value equipment. Share it into 2 equal groups. There are two groups of 14 and I remainder.	Use place value equipment to understand the concept of remainder in division. $29 \div 2=?$ $29 \div 2=14 \text { remainder } 1$	Partition to divide, understanding the remainder in context. 67 children try to make 5 equal lines. $\begin{aligned} & 67=50+17 \\ & 50 \div 5=10 \\ & 17 \div 5=3 \text { remainder } 2 \\ & 67 \div 5=13 \text { remainder } 2 \end{aligned}$ There are 13 children in each line and 2 children left out.
Year 4			
	Concrete	Pictorial	Abstract
Year 4 Addition			

Understanding numbers to 10,000	Use place value equipment to understand the place value of 4 -digit numbers. 4 thousands equal 4,000. I thousand is 10 hundreds.	Represent numbers using place value counters once children understand the relationship between $1,000 \mathrm{~s}$ and 100s. 1,000 (100) 100 $2,000+500+40+2=2,542$	Understand partitioning of 4-digit numbers, including numbers with digits of 0 . $5,000+60+8=5,068$ Understand and read 4-digit numbers on a number line.
Choosing mental methods where appropriate	Use unitising and known facts to support mental calculations. Make 1,405 from place value equipment. Add 2,000. Now add the 1,000s. I thousand +2 thousands $=3$ thousands $1,405+2,000=3,405$	Use unitising and known facts to support mental calculations. I can add the 100s mentally. $200+300=500$ So, $4,256+300=4,556$	Use unitising and known facts to support mental calculations. $\begin{aligned} & 4,256+300=? \\ & 2+3=5 \quad 200+300=500 \\ & 4,256+300=4,556 \end{aligned}$
Column addition with exchange	Use place value equipment on a place value grid to organise thinking.	Use place value equipment to model required exchanges.	Use a column method to add, including exchanges.

	Ensure th to place 4-digit n Use equip Why ha row? Why Which colun	children unders and what to d ers. t.to show 1,905 ly three column the Thousands ns will total 10	how the the num 775. empty? more?	e columns relate mbers are not all for the second	Include exa column.	les that exchang		0 000 0 0 0 0 0 0 han one	Th H T O I 5 5 4 +4 2 3 7 1Th H T O I 5 5 4 +4 2 3 7 9 I Th H T O I 5 5 4 4 2 3 7 5 7 9 1 1 Include examples that exchange in more than one column.
Representing additions and checking strategies					Bar models problem con appropriate	ay be used to ats, and to jus	represent additio stify mental m	itions in ethods where	Use rounding and estimating on a number line to check the reasonableness of an addition.

	 \rightarrow gagag		$\begin{array}{rrrr} \text { Th } & \mathrm{H} & \mathrm{~T} & \mathrm{O} \\ \hline 2 & 48 & 9^{\prime} & \mathrm{A} \\ \hline & 2 & 4 & 3 \\ \hline & 2 & 4 & \\ \hline 2 & 2 & 5 & 9 \\ \hline \end{array}$
Representing subtractions and checking strategies		Use bar models to represent subtractions where a part needs to be calculated. I can work out the total number of Yes votes using $5,762-2,899$. Bar models can also represent 'find the difference' as a subtraction problem.	Use inverse operations to check subtractions. / calculated 1,225-799=574. I will check by adding the parts. The parts do not add to make 1,225. I must have made a mistake.

Year 4 Multiplication				
Multiplying by multiples of 10 and 100	Use unitising and place value equipment to understand how to multiply by multiples of I, IO and IOO. 3 groups of 4 ones is 12 ones. 3 groups of 4 tens is 12 tens. 3 groups of 4 hundreds is 12 hundreds.	Use unitising and place value equipment to understand how to multiply by multiples of I, IO and IOO.	Use known facts and understanding of place value and commutativity to multiply mentally. $\begin{aligned} & 4 \times 7=28 \\ & 4 \times 70=280 \\ & 40 \times 7=280 \end{aligned}$ $4 \times 700=2,800$ $400 \times 7=2,800$	
Understanding times-tables up to 12 $\times 12$	Understand the special cases of multiplying by I and 0 . $5 \times 1=5$ $5 \times 0=0$	Represent the relationship between the $\times 9$ table and the $\times 10$ table. Represent the $\times \\|$ table and $\times 12$ tables in relation to the $\times 10$ table. $\begin{aligned} & 2 \times 11=20+2 \\ & 3 \times 11=30+3 \\ & 4 \times 11=40+4 \end{aligned}$ $4 \times 12=40+8$	Understand how times-tables relate to counting patterns. Understand links between the $\times 3$ table, $\times 6$ table and $\times 9$ table 5×6 is double 5×3 $\times 5$ table and $\times 6$ table 1 know that $7 \times 5=35$ sol know that $7 \times 6=35+7$. $\times 5$ table and $\times 7$ table $3 \times 7=3 \times 5+3 \times 2$ $\times 9$ table and $\times 10$ table $\begin{aligned} & 6 \times 10=60 \\ & 6 \times 9=60-6 \end{aligned}$	

Understanding and using partitioning in multiplication	Make multiplications by partitioning. 4×12 is 4 groups of 10 and 4 groups of 2 . $4 \times 12=40+8$	Understand how multiplication and partitioning are related through addition.	Use partitioning to multiply 2-digit numbers by a single digit. $18 \times 6=?$ $\begin{aligned} 18 \times 6 & =10 \times 6+8 \times 6 \\ & =60+48 \\ & =108 \end{aligned}$
Column multiplication for 2and 3-digit numbers multiplied by a single digit	Use place value equipment to make multiplications. Make 4×136 using equipment. I can work out how many $1 \mathrm{~s}, 10$ s and 100 s. There are 4×6 ones... 24 ones There are 4×3 tens ... 12 tens There are 4×1 hundreds... 4 hundreds $24+120+400=544$	Use place value equipment alongside a column method for multiplication of up to 3-digit numbers by a single digit.	Use the formal column method for up to 3-digit numbers multiplied by a single digit. $\begin{array}{r} 312 \\ \times \quad 3 \\ \hline 936 \\ \hline \end{array}$ Understand how the expanded column method is related to the formal column method and understand how any exchanges are related to place value at each stage of the calculation.

Multiplying more than two numbers	Represent situations by multiplying three numbers together. Each sheet has 2×5 stickers. There are 3 sheets. There are $5 \times 2 \times 3$ stickers in total. $\begin{aligned} & \underbrace{5 \times 2}_{10} \times 3=30 \\ & 10 \times 3=30 \end{aligned}$	Understand that commutativity can be used to multiply in different orders. $\begin{array}{lllll}\bullet 000: 0 & 000000 & 000000 & 000000 & 000000 \\ \because 000 \\ 00000 & 000000 & 000000 & 000000\end{array}$ -००००० ०००००० ०००००० ०००००० ०००००० -७७७○७ ○○○○○○ ○○○○○○ ○○○○○○ ○○○○○○ $\begin{aligned} 2 \times 6 \times 10 & =120 \\ 12 \times 10 & =120 \end{aligned}$ $\begin{aligned} 10 \times 6 \times 2 & =120 \\ 60 \times 2 & =120 \end{aligned}$	Use knowledge of factors to simplify some multiplications. $\begin{aligned} & 24 \times 5=12 \times 2 \times 5 \\ & 12 \times \underbrace{2 \times 5}_{1}= \\ & 12 \times 10=120 \end{aligned}$ So, $24 \times 5=120$
Year 4 Division			
Understanding the relationship between multiplication and division, including times-tables	Use objects to explore families of multiplication and division facts. $4 \times 6=24$ 24 is 6 groups of 4 . 24 is 4 groups of 6 . 24 divided by 6 is 4 . 24 divided by 4 is 6 .	Represent divisions using an array. 0000000 0000000 $28 \div 7=4$	Understand families of related multiplication and division facts. I know that $5 \times 7=35$ so I know all these facts: $\begin{aligned} & 5 \times 7=35 \\ & 7 \times 5=35 \\ & 35=5 \times 7 \\ & 35=7 \times 5 \\ & 35 \div 5=7 \\ & 35 \div 7=5 \\ & 7=35 \div 5 \end{aligned}$

Power Maths © Pearson 2019
Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited.

			$5=35 \div 7$
Dividing multiples of 10 and 100 by a single digit	Use place value equipment to understand how to use unitising to divide. 8 ones divided into 2 equal groups 4 ones in each group 8 tens divided into 2 equal groups 4 tens in each group 8 hurdreds divided into 2 equal groups 4 hundreds in each group	Represent divisions using place value equipment. $9 \div 3=\square$ 9 tens divided by 3 is 3 tens. 9 hundreds divided by 3 is 3 hundreds.	Use known facts to divide IOs and IOOs by a single digit. $\begin{aligned} & 15 \div 3=5 \\ & 150 \div 3=50 \\ & 1500 \div 3=500 \end{aligned}$
Dividing 2-digit and 3-digit numbers by a single digit by partitioning into $100 \mathrm{~s}, 10 \mathrm{~s}$ and Is	Partition into $1 \mathrm{Os}_{\mathrm{s}}$ and Is to divide where appropriate. $39 \div 3=?$ $\begin{gathered} 39=30+9 \\ 30 \div 3=10 \\ 9 \div 3=3 \\ 39 \div 3=13 \end{gathered}$	Partition into 100 s , 1 Os and Is using Base 10 equipment to divide where appropriate. $39 \div 3=?$ 3 groups of I ten 3 groups of 3 ones $\begin{gathered} 39=30+9 \\ 30 \div 3=10 \\ 9 \div 3=3 \end{gathered}$	Partition into 100 s , 10 s and Is using a part-whole model to divide where appropriate. $142 \div 2=?$ $100 \div 2=$ \square $40 \div 2=$ \square $6 \div 2=$ \square $\begin{gathered} 100 \div 2=50 \\ 40 \div 2=20 \\ 6 \div 2=3 \\ 50+20+3=73 \end{gathered}$

		$39 \div 3=13$	$142 \div 2=73$
Dividing 2-digit and 3-digit numbers by a single digit, using flexible partitioning	Use place value equipment to explore why different partitions are needed. $42 \div 3=?$ I will split it into 30 and 12, so that I can divide by 3 more easily.	Represent how to partition flexibly where needed. $84 \div 7=?$ I will partition into 70 and 14 because I am dividing by 7. $84 \div 7=12$	Make decisions about appropriate partitioning based on the division required. Understand that different partitions can be used to complete the same division. $30 \div 3=10 \quad 30 \div 3=10 \quad 30 \div 3=10 \quad 30 \div 3=10 \quad 12 \div 3=4$
Understanding remainders	Use place value equipment to find remainders. 85 shared into 4 equal groups There are 24, and I that cannot be shared.	Represent the remainder as the part that cannot be shared equally. $72 \div 5=14$ remainder 2	Understand how partitioning can reveal remainders of divisions. $\begin{aligned} & 80 \div 4=20 \\ & 12 \div 4=3 \end{aligned}$ $95 \div 4=23 \text { remainder } 3$

Power Maths calculation policy

Power Maths © Pearson 2019
Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited.

