Bilston Church of England Primary School

Maths calculation policy, UPPER KS2

We will aspire through our Christian beliefs and attitudes for all children in our care to flourish both academically and personally; develop respect for others and to reach out to their local and global communities, so, hand in hand together with faith we will strive to achieve all things...
'I am able to do all things through him (Jesus) who strengthens me.'
Adopted By Governers- 2022
Curriculum Lead- MJohnson

KEY STAGE 2

In upper Key Stage 2, children build on secure foundations in calculation, and develop fluency, accuracy and flexibility in their approach to the four operations. They work with whole numbers and adapt their skills to work with decimals, and they continue to develop their ability to select appropriate, accurate and efficient operations.
Key language: decimal, column methods, exchange, partition, mental method, ten thousand, hundred thousand, million, factor, multiple, prime number, square number, cube number

Addition and subtraction: Children build on their column

 methods to add and subtract numbers with up to seven digits, and they adapt the methods to calculate efficiently and effectively with decimals, ensuring understanding of place value at every stage.Children compare and contrast methods, and they select mental methods or jottings where appropriate and where these are more likely to be efficient or accurate when compared with formal column methods.
Bar models are used to represent the calculations required to solve problems and may indicate where efficient methods can be chosen.

Multiplication and division: Building on their understanding, children develop methods to multiply up to 4 -digit numbers by single-digit and 2-digit numbers.
Children develop column methods with an understanding of place value, and they continue to use the key skill of unitising to multiply and divide by 10,100 and 1,000
Written division methods are introduced and adapted for division by single-digit and 2-digit numbers and are understood alongside the area model and place value. In Year 6, children develop a secure understanding of how division is related to fractions.
Multiplication and division of decimals are also introduced and refined in Year 6.

Fractions: Children find fractions of amounts, multiply a
fraction by a whole number and by another fraction, divide a fraction by a whole number, and add and subtract fractions with different denominators. Children become more confident working with improper fractions and mixed numbers and can calculate with them.
Understanding of decimals with up to 3 decimal places is built through place value and as fractions, and children calculate with decimals in the context of measure as well as in pure arithmetic.
Children develop an understanding of percentages in relation to hundredths, and they understand how to work with common percentages: $50 \%, 25 \%, 10 \%$ and 1%

	Two lengths of fencing are 0.6 m and 02 m . How long are they when added together? 0.6 m $0 \cdot 2 \mathrm{~m}$	$0.6+0.2=0.8$ 6 tenths +2 tenths $=8$ tenths	$\begin{aligned} & \frac{6}{10}+\frac{2}{10}=\frac{8}{10} \\ & 6 \text { tenths }+2 \text { tenths }=8 \text { tenths } \\ & 06+02=08 \end{aligned}$
Adding decimals using column addition	Use place value equipment to represent additions. Show $0.23+0.45$ using place value counters.	Use place value equipment on a place value grid to represent additions. Represent exchange where necessary. Include examples where the numbers of decimal places are different.	Add using a column method, ensuring that children understand the link with place value. $\begin{array}{r} 0 \cdot \text { Tth Hth } \\ \hline 0 \cdot 25 \\ +0 \cdot 4 \quad 5 \\ \hline 0 \cdot 6 \\ \hline \end{array}$ Include exchange where required, alongside an understanding of place value. $\begin{array}{r} 0 \cdot \text { Tth Hth } \\ \hline 0 \cdot 92 \\ +0 \cdot 33 \\ \hline 1 \cdot 25 \\ \hline 1! \end{array}$ Include additions where the numbers of decimal places are different. $\begin{aligned} & 3.4+0.65=? \\ & \begin{array}{l} 0 \cdot \text { Tth Hth } \\ \hline 3 \cdot 40 \\ +0 \cdot 65 \\ \hline \end{array} \end{aligned}$
Year 5 Subtraction			

Power Maths © Pearson 2019
Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited.

			Use addition to check subtractions. I calculated $7,546-2,355=5,191$. 1 will check using the inverse.
Subtracting decimals	Explore complements to a whole number by working in the context of length. $\begin{aligned} & 0.49 \mathrm{~m} \\ & 1 \mathrm{~m}-\square \mathrm{m}=\square \mathrm{m} \\ & 1-0.49=? \end{aligned}$	Use a place value grid to represent the stages of column subtraction, including exchanges where required. $5.74-2.25=?$ $\begin{array}{r} 0 \cdot \text { Tth Hth } \\ \hline 5 \cdot 7 \% 4 \\ -2 \cdot 2 \quad 5 \\ \hline \end{array}$ Exchange I tenth for 10 hundredths. \qquad Now subtract the 5 hundredths. $\begin{array}{rrr} 0 & \cdot \text { Tth Hth } \\ \hline 5 \cdot{ }^{2} y & 14 \\ -2 \cdot 2 \quad 5 \\ \hline & \cdot & 9 \\ \hline \end{array}$ Now subtract the 2 tenths, then the 2 ones.	Use column subtraction, with an understanding of place value, including subtracting numbers with different numbers of decimal places.$3.921-3.75=?$0 \cdot Tth Hth 3 \cdot 9 2
Year 5 Multiplication			
Understanding factors	Use cubes or counters to explore the meaning of 'square numbers'. 25 is a square number because it is made from 5 rows of 5 .	Use images to explore examples and non-examples of square numbers.	Understand the pattern of square numbers in the multiplication tables. Use a multiplication grid to circle each square number. Can children spot a pattern?

Power Maths © Pearson 2019
Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited.

	5 groups of 3 ones is 15 ones. 5 groups of 3 tens is 15 tens. So, 1 know that 5 groups of 3 thousands would be 15 thousands.	$\begin{array}{lc} 4 \times 3=12 & 6 \times 4=24 \\ 4 \times 300=1,200 & 6 \times 400=2,400 \end{array}$	
Multiplying up to $4-$ digit numbers by a single digit	Explore how to use partitioning to multiply efficiently. $8 \times 17=?$ $8 \times 10=80$ $80+56=136$ So, $8 \times 17=136$ $8 \times 7=56$	Represent multiplications using place value equipment and add the Is , then 10 s , then 100 s , then 1,000 s.	Use an area model and then add the parts. Use a column multiplication, including any required exchanges. $\begin{array}{r} 136 \\ \times \quad 6 \\ \hline 816 \\ \hline 23 \end{array}$
Multiplying 2-digit numbers by 2-digit numbers	Partition one number into I_{s} and $\mathrm{I} s$, then add the parts. $23 \times 15=?$	Use an area model and add the parts. $28 \times 15=?$	Use column multiplication, ensuring understanding of place value at each stage. $\begin{array}{r} 34 \\ \times \quad 27 \\ \hline 23834 \times 7 \end{array}$

	8 and 3 are factors of 24 because they divide 24 exactly. $24 \div 5=4 \text { remainder } 4 .$ 5 is not a factor of 24 because there is a remainder.	1 and 13 are the only factors of 13 . 13 is a prime number.									I know that 33 is not a prime number as it can be divided by 1, 3, 1/ and 33. I know that I is not a prime number, as it has only I factor.			
Understanding inverse operations and the link with multiplication. grouping and sharing	Use equipment to group and share and to explore the calculations that are present. I have 28 counters. 1 made 7 groups of 4 . There are 28 in total. I have 28 in total. I shared them equally into 7 groups. There are 4 in each group. I have 28 in total. I made groups of 4. There are 7 equal groups.	Represent multiplicative relationships and explore the families of division facts.$\begin{aligned} & 60 \div 4=15 \\ & 60 \div 15=4 \end{aligned}$									Represent the different multiplicative relationships to solve problems requiring inverse operations. $\begin{aligned} & 12 \div 3=\square \\ & 12 \div \square=3 \end{aligned}$ $\times 3=12$ \square $\div 3=12$ Understand missing number problems for division calculations and know how to solve them using inverse operations. $\begin{aligned} & 22 \div ?=2 \\ & 22 \div 2=? \\ & ? \div 2=22 \\ & ? \div 22=2 \end{aligned}$			
Dividing whole numbers by 10,100 and 1,000	Use place value equipment to support unitising for division. 4,000 is 4 thousands.	Use a bar $\begin{gathered} 380 \div 10 \\ \hline ? \\ \hline 380 \\ \hline \end{gathered}$	odel 38	su	ort	vidin	by	uitis	g.	?	Unders value grid	how hen d \square $0=?$ thousa $=2$ $0=3$	y the by T \square 0 and 2	ts change on a place or 1,000 . o 0 dreds.

	$4 \times 1,000=4,000$ So, $4,000 \div 1,000=4$	$\begin{aligned} & 380 \text { is } 38 \text { tens. } \\ & 38 \times 10=380 \\ & 10 \times 38=380 \\ & \text { So, } 380 \div 10=38 \end{aligned}$	$3,200 \div 100=32$ So, the digits will move two places to the right.
Dividing by multiples of 10,100 and I,000	Use place value equipment to represent known facts and unitising. 15 ones put into groups of 3 ones. There are 5 groups. $15 \div 3=5$ 15 tens put into groups of 3 tens. There are 5 groups. $150 \div 30=5$	Represent related facts with place value equipment when dividing by unitising. 180 is 18 tens. 18 tens divided into groups of 3 tens. There are 6 groups. $180 \div 30=6$ 12 ones divided into groups of 4. There are 3 groups. 12 hundreds divided into groups of 4 hundreds. There are 3 groups. $1200 \div 400=3$	Reason from known facts, based on understanding of unitising. Use knowledge of the inverse relationship to check. $\begin{aligned} & 3,000 \div 5=600 \\ & 3,000 \div 50=60 \\ & 3,000 \div 500=6 \end{aligned}$ $\begin{aligned} & 5 \times 600=3,000 \\ & 50 \times 60=3,000 \\ & 500 \times 6=3,000 \end{aligned}$

Power Maths © Pearson 2019
Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited.

	$2,411,301+500,000=2,911,301$	257 thousands + 100 thousands $=357$ thousands $\begin{aligned} & 257,000+100,000=357,000 \\ & 357,000-1,000=356,000 \end{aligned}$ So, $257,000+99,000=356,000$	
Understanding order of operations in calculations	Use equipment to model different interpretations of a calculation with more than one operation. Explore different results.	Model calculations using a bar model to demonstrate the correct order of operations in multi-step calculations. This can be written as: $16 \times 4+16 \times 6$ $\frac{16 \times 4}{64}+\frac{16 \times 6}{96}=160$	Understand the correct order of operations in calculations without brackets. Understand how brackets affect the order of operations in a calculation. $\begin{aligned} & 4+6 \times 16 \\ & 4+96=100 \\ & (4+6) \times 16 \\ & 10 \times 16=160 \end{aligned}$
Year 6 Subtraction			
Comparing and selecting efficient methods	Use counters on a place value grid to represent subtractions of larger numbers.	Compare subtraction methods alongside place value representations.	Compare and select methods. Use column subtraction when mental methods are not efficient. Use two different methods for one calculation as a checking strategy.

		Th H T O 2 6 7 9 - 5 3 4 2 1 4 5 Use a bar model to represent calculations, including 'find the difference' with two bars as comparison.	Use column subtraction for decimal problems, including in the context of measure.
Subtracting mentally with larger numbers		Use a bar model to show how unitising can support mental calculations. $950,000-150,000$ That is 950 thousands - 150 thousands So, the difference is 800 thousands. $950,000-150,000=800,000$	Subtract efficiently from powers of 10 . $10,000-500=?$
Year 6 Multiplication			
Multiplying up to a 4-digit number by a single digit number	Use equipment to explore multiplications. 4 groups of 2,345	Use place value equipment to compare methods. Method I	Understand area model and short multiplication. Compare and select appropriate methods for specific multiplications.

	This is a multiplication $\begin{aligned} & 4 \times 2,345 \\ & 2,345 \times 4 \end{aligned}$		Method 3 $\begin{array}{r} \text { Method } 4 \\ \times 225 \\ \times \quad 4 \\ \hline 12900 \\ \hline 122 \end{array}$
Multiplying up to a 4-digit number by a 2-digit number		Use an area model alongside written multiplication. Method I $\begin{array}{llllll} & 1 & 2 & 3 & 5 & \\ \times & & & 2 & 1 & \\ \times & & & & 5 & 1 \times 5 \\ & & & & 3 & 0 \\ & & & 1 \times 30 \\ & & 2 & 0 & 0 & 1 \times 200 \\ & 1 & 0 & 0 & 0 & 1 \times 1,000 \\ & & 1 & 0 & 0 & 20 \times 5 \\ & & 6 & 0 & 0 & 20 \times 30 \\ & 4 & 0 & 0 & 0 & 20 \times 200 \\ 2 & 0 & 0 & 0 & 0 & 20 \times 1,000 \\ \hline 2 & 5 & 9 & 3 & 5 & 21 \times 1,235 \end{array}$	Use compact column multiplication with understanding of place value at all stages.
Using knowledge of factors and partitions to compare methods for multiplications	Use equipment to understand square numbers and cube numbers.	Compare methods visually using an area model. Understand that multiple approaches will produce the same answer if completed accurately.	Use a known fact to generate families of related facts.

		1,260 \square $\begin{aligned} & 1,260 \div 2=630 \\ & 630 \div 7=90 \\ & 1,260 \div 14=90 \end{aligned}$	$\begin{aligned} & 2.100 \rightarrow+2 \rightarrow+5 \\ & 2.100 \rightarrow+6 \rightarrow+2 \rightarrow \\ & 2.100 \rightarrow+3 \rightarrow+4 \\ & 2.100 \rightarrow+4 \rightarrow+3 \\ & 2.100 \rightarrow+3 \rightarrow+2 \rightarrow+2 \end{aligned}$
Dividing by a 2-digit number using long division	Use equipment to build numbers from groups. 182 divided into groups of 13 . There are 14 groups.	Use an area model alongside written division to model the process. $377 \div 13=?$ 13 \square ${ }^{3}$ 13 \square 13 $377 \div 13=29$	Use long division where factors are not useful (for example, when dividing by a 2-digit prime number). Write the required multiples to support the division process. $377 \div 13=?$ $\begin{array}{rlll} 13 & 3 & 7 & 7 \\ - & 1 & 3 & 0 \\ \hline & 10 \\ \hline 2 & 4 & 7 & \\ - & 1 & 3 & 0 \\ \hline 1 & 1 & 7 & \\ - & 1 & 7 & 9 \\ \hline & & 0 & 29 \\ 377 \div 13=29 & \end{array}$ A slightly different layout may be used, with the division completed above rather than at the side.

Power Maths © Pearson 2019

Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited.

			$\begin{array}{r} \\ \\ 21 \\ \hline 7 \\ 7 \\ -\quad 6 \\ \hline \end{array}$ $\begin{array}{r} \\ 3 \\ 21 \\ \hline 79 \\ -\quad 9 \\ -\quad 3 \\ \hline 1 \end{array}$ Divisions with a remainder explored in problem-solving contexts.
Dividing by 10,100 and 1,000	Use place value equipment to explore division as exchange. Exchange each 0.1 for ten 0.01 s . Divide 20 counters by 10 . 0.2 is 2 tenths. 2 tenths is equivalent to 20 hundredths. 20 hundredths divided by 10 is 2 hundredths.	Represent division to show the relationship with multiplication. Understand the effect of dividing by 10 , 100 and 1,000 on the digits on a place value grid. Understand how to divide using division by 10,100 and I,000. $12 \div 20=?$	Use knowledge of factors to divide by multiples of 10,100 and 1,000 . $40 \div 50=$ $40 \rightarrow \div \div \div ?$ $\begin{aligned} & 40 \div 5=8 \\ & 8 \div 10=0.8 \end{aligned}$ So, $40 \div 50=0.8$
Dividing decimals	Use place value equipment to explore division of decimals.	Use a bar model to represent divisions.	Use short division to divide decimals with up to 2 decimal places.

Power Maths calculation policy

