What does Maths look like in EYFS at Bilston?

Historically, children enter our Reception class with poor numeracy skills. Many can count by rote to IO and sometimes beyond but have little understanding of cardinality or the value of numbers. Knowledge of shape and pattern is also limited. This is shown through the NFER baseline data and baseline teacher assessments.

As we receive children from many different settings and they are often not used to sitting for main teaching, we have this year trialled using an objective led planning approach to teaching Maths in Autumn term. This has meant that children did not have a formal Maths lesson, instead the key maths objectives were taught in a 1:1 capacity linked wherever possible to what children were already engaged with within the learning environment. This allowed staff to ensure individual understanding of key concepts before moving on to the next strand. It also helped staff identify those children who were not understanding key concepts. Additional sessions and interventions were planned and delivered to support their learning.

Alongside objective led planning, Number Sense was used as a daily session to support children's basic understanding of number.

Key routines also have a strong Maths focus, e.g. counting children present/absent, days of the week, date...

By using objective led planning, children became familiar with using manipulatives, they had teaching tailored to their individual needs, the focus was on the Maths objectives rather than trying to get children, many who were not ready, all sitting quietly and focussing on the carpet and staff had a clear understanding of children's individual capabilities.

At the start of Spring Term, a daily Maths lesson is also timetabled. This is a 15 minute session during which children work with allocated 'learning partners', each pair having their own box of manipulatives. The session is made up of 4 parts: review, teach, practise, apply. Staff use resources from NCETM, White Rose and Power Maths to allow children to apply their learning.

From this session, children who lack understanding are identified and objective led planning for these children takes place in addition.

The focus in EYFS is practically working with Maths, building children's knowledge and understanding of manipulatives and building firm foundations on which to build in Year I and beyond. In order to prepare children for recording in Maths in Year I, there will be a greater number of opportunities for children to record with written numerals and symbols within the environment in Summer Term.

Our EYFS Maths curriculum is based on NCETM with links to White Rose and Power Maths. Skills are mapped out over the 3 terms, progressing from children's expected entry points in September. The primary focus is on number as the Early Learning Goals for the end of Reception in Maths are number based:

- Have a deep understanding of number to 10, including the composition of each number.
- Subitise (recognise quantities without counting) up to 5
- Verbally count beyond 20, recognising the pattern of the counting system
- Compare quantities up to IO in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity
- Automatically recall (without reference to rhymes, counting or other aids) number bonds up to 5 (including subtraction facts) and some number bonds to 10, including double facts.
- Explore and represent patterns within numbers up to IO, including evens and odds, double facts and how quantities can be distributed equally.

This said, our Maths curriculum is much wider than this and incorporates other areas of Maths including shape, space and measure, positional language and patterns. There are many opportunities for these areas of maths to be explored within the continuous and enhanced provision.

There is an accessible Maths area in each classroom and in the outdoor area with manipulatives available for children to explore at all times in the school day. Children are also encouraged to use other means to explore Maths e.g. Numicon or counters in playdough, painting with Maths resources or shapes... Below is our skills and knowledge map for Maths in Reception:

MATHEMATI	CS				
Number					
	On Entry	Autumn	Spring	Summer	
Cardinality	Counting – saying	Counting: knowing	Numeral meanings	Conservation: knowing	
and	number words in	the last number		that the number does	
Counting	sequence	counted gives the		not change if things ar	
		total so far		rearranged (as long as	
	Counting - tagging			none have been added	
	each object with	Subitising: recognising		or taken away)	
	one number word	small quantities			
		without needing to		Development Matters:	
		count them all		Count objects, actions	
				and sounds.	
				Subitise.	
				Link the number symbo	
				(numeral) with its	
				cardinal number value	
				Count beyond ten.	
				Early Learning Goals:	
				Have a deep	
				understanding of	
				number to 10, includin	
				the composition of each	
				number.	
				Subitise (recognise	
				quantities without	
				counting) up to 5	
				Verbally count beyond	
				20, recognising the	
				pattern of the counting	
				system	
l have a	l can recite	I can count objects,	I can link the	Have a deep	
secure	numbers past 5.	actions and sounds.	number symbol	understanding of	
understandin			(numeral) with its	number to 10, includin	
g of numbers	l can say one	l can link numerals	cardinal number	the composition of each	
to 10.	number for each	and amounts: for	value.	number.	
	item in order:	example, showing the			
	1,2,3,4,5.	right number of	l can count beyond		
		objects to match the	ten.		
		numeral, up to 5.			

l can subitise to 5.	I can experiment with their own symbols and marks as well as numerals. I know that the last number reached when counting a small set of objects tells you how many there are in total (`cardinal principle'). I can show `finger	I am developing fast recognition of up to 3 objects, without having to count them individually ('subitising').	I understand the `one more than/one less than' relationship between consecutive numbers. I can subitise to 5 with greater reliability.	Subitise (recognise quantities without counting) up to 5.
l can count beyond 20.	numbers' up to 5. As above	As above	I can count beyond ten. I can use apparatus to make numbers to 20, understanding the significance of the ten.	Verbally count beyond 20, recognising the pattern of the counting system.
Comparison	I can identify which group has the largest/smallest amount.	More than / less than Identifying groups with the same number of things	Comparing numbers and reasoning	Knowing the 'one more than/one less than' relationship between counting numbers Development Matters: Compare numbers. Understand the 'one more than/one less than' relationship between consecutive numbers. Compare length, weight and capacity Early Learning Goals:

				Compare quantities up to IO in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity
l can compare quantities.	I can identify which group has most/more and least/less.	I can make simple comparisons between objects relating to size, length, weight and capacity I can compare quantities using language: `more than', `fewer than'.	I can compare numbers. (smallest/largest/sm aller/larger/more/le ss) I can compare length, weight and capacity.	Compare quantities up to IO in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity.
Composition	I can put two groups of objects together and count them to find the total amount.	Part-whole: identifying smaller numbers within a number (conceptual subitising – seeing groups and combining to a total) Inverse operations	A number can be partitioned into different pairs of numbers A number can be partitioned into more than two numbers	Number bonds: knowing which pairs make a given number Development Matters: Explore the composition of numbers to IO. Automatically recall number bonds for numbers O-5 and some to IO. Early Learning Goals: Automatically recall (without reference to rhymes, counting or other aids) number bonds up to 5 (including subtraction facts) and some number bonds to IO, including double facts. Explore and represent patterns within numbers up to IO, including

l can recall number facts to 5.	I can solve simple real world mathematical problems with numbers up to 5 with apparatus and support.	I can solve real world mathematical problems with numbers up to 5. I can explore the composition of numbers to 5.	I can explore the composition of numbers to IO. I can recall some number bonds to 5. I am beginning to identify doubles to IO.	evens and odds, double facts and how quantities can be distributed equally Automatically recall (without reference to rhymes, counting or other aids) number bonds up to 5 (including subtraction facts) and some number bonds to IO, including double facts.
Measures	Recognising attributes	Comparing amounts of continuous quantities Showing awareness of comparison in estimating and predicting Comparing indirectly	Recognising the relationship between the size and number of units Beginning to use time to sequence events	Beginning to use units to compare things Beginning to experience specific time durations
Pattern	Continuing an AB pattern Copying an AB pattern	Make their own AB pattern Spotting an error in an AB pattern Identifying the unit of repeat	Continuing an ABC pattern Continuing a pattern which ends mid-unit Make their own ABB, ABBC patterns Spotting an error in an ABB pattern	Symbolising the unit structure Generalising structures to another context or mode Making a pattern which repeats around a circle Making a pattern around a border with a fixed number of spaces Development Matters: Continue, copy and create repeating patterns

l can identify patterns in numbers. l can continue repeating patterns.	I can talk about and identify the patterns around me. For example: stripes on clothes, designs on rugs and wallpaper. Use informal language like 'pointy', 'spotty', 'blobs' etc.	I can extend and create ABAB patterns – stick, leaf, stick, leaf. I can notice and correct an error in a repeating pattern. I can begin to describe a sequence of events, real or fictional, using words such as 'first', 'then'	I can continue, copy and create repeating patterns with 2 or more objects.	Early Learning Goals: Explore and represent patterns within numbers up to IO, including evens and odds, double facts and how quantities can be distributed equally Explore and represent patterns within numbers up to IO, including evens and odds, double facts and how quantities can be distributed equally.
Shape and Space	Developing spatial awareness: experiencing different viewpoints	Developing spatial vocabulary Shape awareness: developing shape awareness through construction	Representing spatial relationships Identifying similarities between shapes Showing awareness of properties of shape	Describing properties of shape Developing an awareness of relationships between shapes Development Matters: Select, rotate and manipulate shapes to develop spatial reasoning skills Compose and decompose shapes so that children recognise a shape can have other shapes within it, just as numbers can.

l can talk	l can name some	I can talk about and	l can select, rotate	I can name and
about and	familiar shapes.	explore 2D and 3D	and manipulate	describe some familiar
explore 2D		shapes (for example,	shapes to develop	2D and 3D shapes.
and 3D	I am beginning to	circles, rectangles,	spatial reasoning	
shapes.	select shapes	triangles and cuboids)	skills.	I can select, rotate and
	appropriately: flat	using informal and		manipulate shapes to
	surfaces for	mathematical	I can compose and	develop spatial reasoning
	building, a	language: 'sides',	decompose shapes so	skills.
	triangular prism	`corners'; `straight',	that children	
	for a roof etc.	`flat', `round'.	recognise a shape	I can compose and
			can have other	decompose shapes so
		l can identify some	shapes within it, just	that children recognise
		2D and 3D shapes in	as numbers can.	a shape can have other
		the environment		shapes within it, just as
		around me.	I can use 2D shapes	numbers can.
			to make a picture.	
			I can use 3D shapes	
			to make a structure,	
			showing an	
			understanding of	
			basic properties	
			(stack, roll)	
I can use	I can understand	I can describe the	l can use positional	I can understand and
positional	position through	position of something	language to describe	use positional language.
language	words alone – for	('Where is the teddy?	a familiar route.	
	example, "The bag	'On top of the table.')		
	is under the		I can discuss routes	
	table," — with no		and locations, using	
	pointing.		words like `in front	
			of' and 'behind'.	