Reception Maths Medium Term Plan - Spring 1

How is Maths taught in Reception?

Self registration - children add picture to tens frames. How many children are here? How many children are away?
Date - days of the week song, count up to the date number.
Daily nursery rhymes - number links
Daily Maths lesson - Review, Teach, Practise in groups, Apply
3x Number
2x Shape, Space, Measures

Number Sense - 5 mins daily
Maths opportunities within the environment as part of continuous and enhanced provision

Mathematics						
Number						
Link the number symbol (numeral) with its cardinal number value. (numbers 6-8) Introduce tens frame. I can subitise to 5 with	Link the number symbol (numeral) with its cardinal number value. (numbers 6-8) I can subitise to 5 with greater reliability.	Link the number symbol (numeral) with its cardinal number value. (numbers 9-10) tens frame. Compare numbers. (smallest/largest/smaller/larger/more/less) I can subitise to 5 with greater reliability.	Link the number symbol (numeral) with its cardinal number value. (numbers 9-10) Compare numbers. (smallest/largest/smaller/larger/more/less) I can subitise to 5 with greater reliability.	Compare numbers. (smallest/largest/smaller/larger/more/less) Understand the 'one more than/one less than' relationship between consecutive numbers (to 10) I can subitise to 5 with greater reliability.	Explore the composition of numbers to 10 .	

Reception Maths Medium Term Plan - Spring 1

greater reliability.						
Numerical Patterns						
Continuing an ABC pattern Continuing a pattern which ends midunit Make their own ABB, ABBC patterns	Spotting an error in an ABB pattern I can continue, copy and create repeating patterns with 2 or more objects.					Beginning to identify doubles to 10 .
Spatial Awareness						
		Use 2D shapes to make a picture. Select, rotate and manipulate shapes to develop spatial reasoning skills. Compose and decompose shapes so that children recognise a shape can have other shapes within it, just as numbers can.	Use 3D shapes to make a structure, showing an understanding of basic properties (stack, roll...)	Compare length, weight and capacity.	Compare length, weight and capacity.	Compare length, weight and capacity.

Reception Maths Medium Term Plan - Spring 1

	Continuing a pattern which ends mid-unit Make their own ABB, ABBC patterns		6, 7 and 8 Guidance Children continue to apply the counting principles when counting to 6,7 and 8 . They represent 6,7 , and 8 in different ways and can count out the required number of objects from a larger group. Arranging 6,7 or 8 items into small groups will support the children to conceptually subitise and see how the numbers are made up of smaller numbers. E.g. I know it is 8 because I see 4 and 4 Encourage the children to order and compare their representations, noticing the one more/less patterns as they count on and back to 8 Other Resources Six Dinner Sid - Inga Moore Kipper's Toybox - Mick Inkpen Sidney the Silly Only Eats Six - M W Penn Anno's Counting Book - Mitsumasa Anno What the Ladybird Heard - Julia Donaldson Prompts for Learning Note: All the prompts for representing, comparing and composition to 5 can be applied to 6,7 , and 8 Begin with a story such as Six Dinner Sid. How many times do they meet 6 ? Ask the children to make houses to represent Sid's street. Can they number the doors and order the houses from 1 to 6 ? What if we added another house? And another? How many legs does a ladybird have? How many spots? Do you know any other creatures with 6 legs? Use counters to add 6 spots to the other ladybirds. Can you find more than one way to do it? $=\because: E=E=F=$ How many colours do you see in the rainbow? an you make rainbows using objects around the classroom? How many colours did you use? Can you find the rainbow in Anno's counting book?		count forwards/backwa rds same, different odd one out more, fewer group next continue repeat unit of repeat cube round pattern size shape colour bigger smaller same different tall short stripes squares
2	Link the number symbol (numeral) with its cardinal number value. (numbers 6-8) I can subitise to 5 with greater reliability. Spotting an error in an ABB pattern I can continue, copy and create repeating patterns with 2 or more objects.	Have a deep understanding of number to 10 , including the composition of each number. Subitise (recognise quantities without counting) up to 5	Power Maths Unit 7 - Numbers to 10 6, 7 and 8 Guidance Children continue to apply the counting principles when counting to 6,7 and 8 . They represent 6,7 , and 8 in different ways and can count out the required number of objects from a larger group. Arranging 6,7 or 8 items into small groups will support the children to conceptually subitise and see how the numbers are made up of smaller numbers. E.g. I know it is 8 because I see 4 and 4 Encourage the children to order and compare their representations, noticing the one more/less patterns as they count on and back to 8 Other Resources Six Dinner Sid - Inga Moore Kipper's Toybox - Mick Inkpen Sidney the Silly Only Eats Six - M W Penn Anno's Counting Book - Mitsumasa Anno What the Ladybird Heard - Julia Donaldson Prompts for Learning Note: All the prompts for representing, comparing and composition to 5 can be applied to 6,7 , and 8 Begin with a story such as Six Dinner Sid. How many times do they meet 6 ? Ask the children to make houses to represent Sid's street. Can they number the doors and order the houses from 1 to 6? What if we added another house? And another? How many legs does a ladybird have? How many spots? Do you know any other creatures with 6 legs? Use counters to add 6 spots to the other ladybirds. Can you find more than one way to do it? $ニ \because: \subset=E=25=$ How many colours do you see in the rainbow? Can you paint a rainbow with 7 colours? classroom? How many colours did you use? Can you find the rainbow in Anno's counting book?	6,7 and 8 $18^{-}{ }^{-}$Maths Area ${ }^{\text {OKOOSO}}$ Encourage the children to think about where we see 6,7 , and 8 in everyday life and to make collections of 6,7 and 8 objects in the classroom. Sort these items into 6,7 and 8 How else could you show 6,7 , and 8 ? Loose Parts Provide a range of loose parts such as buttons, beads, pebbles, shells and some ten frames. Ask the children to count 6,7 , and 8 items onto the 10 frames. How many do they have? Can they see without counting? The children may also enjoy filling large 10 frames outside. Enhancements to Kipper's Toybox Provide a basket of toys for the children to use to re-enact the story. Take turns to 'hide' one of the toys. Can the children spot which toy is missing? How many toys are there now? What if an extra toy arrives? How many will there be now?	one, two, three, four, five, six, seven, eight, nine, ten 1,2,3,4,5,6,7,8,9,1 0 ten frame count how many? total altogether count forwards/backwa rds same, different odd one out

Reception Maths Medium Term Plan - Spring 1

			Digging Deeper Dot Plates Show the children 6,7 and 8 on a ten frame or in a 10 - hole egg box. Can they see how many without needing to Encourage the children to build 6,7 and 8 onto the 10 frames in pairs - what do they notice? Compare the 5 -wise and pair-wise patterns for each number. What's the same and what's different? \square \qquad How Many Now? Count out 6 cubes with the children and then cover them \qquad \qquad fingers to help them solve the problem.	Key Questions How do you 6 here? What do you notice when you try to make pairs with ? ? How many are hidden now? How do you know? Can you show mew extit thesesecueses? Composition of $6,7,8$ Provide each child with a blue 'pool' and 8 fish. Ask them to arrange their fish into pairs. Ask the children what they notice. Ask the children to arrange their fish different compositions of 8 that the similar way horses in a field, ladybirds on a log.		more, fewer group next continue repeat unit of repeat cube round pattern size shape colour bigger smaller same different tall short stripes squares
3	Link the number symbol (numeral) with its cardinal number value. (numbers 9-10) tens frame. Compare numbers. (smallest/largest/smalle r/larger/more/less) I can subitise to 5 with greater reliability. Use 2D shapes to make a picture. Select, rotate and manipulate shapes to develop spatial reasoning skills. Compose and decompose shapes so	Have a deep understanding of number to 10 , including the composition of each number. Subitise (recognise quantities without counting) up to 5 Compare quantities up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity.	Power Maths Unit numbers within 10	Comparing		more, fewer/fewest greater/greatest smaller/smallest large/largest taller/tallest shorter/shortest compare how many? how many more? different/differen ce puzzle triangle, square fold/open count how many? build turn same/different

Reception Maths Medium Term Plan - Spring 1

Reception Maths Medium Term Plan - Spring 1

		than or the same as the other quantity.	3-D Shape Guidance Children will naturally explore and manipulate 3-D shapes through their block play and modelling. Prompt them to consider which shapes stack and which shapes roll and They should be given opportunities to build using a variety of shapes and to construct their own 3-D shapes in different ways. Children can be introduced to the names of the shapes and be given opportunities to explore similarities and according to what they notice. Other Resources Mouse Shapes - Ellen Stoll Walsh Rapunzel - Traditional The Princess and the Pea - Traditional Changes Changes - Pat Hutchins	Prompts for Learning \square What other is it like this? Show the children a collection of 3-D shapes. Choose one of things as they can about the shape. Can they find another shape like this? Can they find a different shape? How is it Sort the shapes into Ask: \qquad \qquad \qquad Which shapes would you use at the bottom of the tower? Which shapes would you use at the top?		build turn same/different
5	Compare numbers. (smallest/largest/smalle r/larger/more/less) Understand the 'one more than/one less than' relationship between consecutive numbers (to 10) I can subitise to 5 with greater reliability. Compare length, weight and capacity.	Have a deep understanding of number to 10 , including the composition of each number. Subitise (recognise quantities without counting) up to 5 Compare quantities up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity.	Comparing Numbers to 10 Guidance \qquad \qquad \qquad \qquad \qquad \qquad Other Resources \qquad en Black Dots - Quentin Blake Engines Engines - Lisa Bruce \& Stephen Wan Wood Length and Height Guidance \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad Other Resources \qquad \qquad \qquad	Prompts for Learning parts of the stor: EEES in Cockatoos, are more birirs hiding G Grab a handful of buttons. Ask the chidrento guess how many $2 \sqrt{6}$ trame to see. How many buttons can the of ontio 10 Can the see that tot aech numberer Prompts for Learning or see who has the longeststsart, or who can thread the \qquad the same size? Can a small group arrange their footprints \qquad explore. E.g. rulers, tape measures, trundle wheels, height charts. The children may also like to create their own height \square Provide pots and soil and seeds for the children to plant. Encourage them to find ways to measure, as they grow.		more, fewer/fewest greater/greatest smaller/smallest large/largest taller/tallest shorter/shortest compare how many? how many more? different/differen ce large/larger/large st bigger/biggest small/smaller longer/longest shorter/shortest tall/taller/tallest further/furthest length same, different, equal measure compare

Reception Maths Medium Term Plan - Spring 1

			 Power Maths Unit 10 - Measure		
6	Explore the composition of numbers to 10. Compare length, weight and capacity.	Have a deep understanding of number to 10 , including the composition of each number. Automatically recall (without reference to rhymes, counting or other aids) number bonds up to 5 (including subtraction facts) and some number bonds to 10 , including double facts	Power Maths Unit 9 - Addition to 10 Mandatory: hula hoops, pots, soil, seedlings, counters, multilink cubes, part-whole models (photocopiable 23) Optional: flowers, pipe-cleaner flowers or pictures of flowers, tissue paper, similar objects for sorting (coloured balls, different sized bricks, coloured toy cars), sets of items for sorting (apples and bananas on plates, thin brushes and thick brushes in paint pots, piles of large and small stones, toy cows and horses), digit cards Power Maths Unit 10 - Measure		```count part whole altogether how many? total \(1,2,3,4,5,6,7,8,9,1\) 0 addition adding together counting more, fewer heavy/heavier/he aviest light/lighter/light est same different amount weight equal balanced balance scale estimate check measure```

Reception Maths Medium Term Plan - Spring 1

