BILSTON CHURCH OF ENGLAND PRIMARY

MEDIUM TERM PLANNING

Subject	Year Group	Term
Maths	5	Autumn

Topic	National Curriculum Objectives	Power Maths Unit	NCETM Professional development documents	Ready to Progress Criteria
Number and Place Value (Approximately 8 days)	- Read, write, compare numbers to at least 1,000,000 and determine the value of each digit (10,000). - Count forwards or backwards in steps of powers of 10 for any given number up 1,000,000. - Round any number up to $1,000,000$ to the nearest 10, 100, 1,000 and 100,000 (10,	- Power Maths Unit 1	Spine 1 1.26 composition and calculation multiples of 1,000 up to 1,000,000 \qquad is less than \qquad , so \qquad thousand is less than \qquad thousand.' \qquad is greater than \qquad so \qquad thousand is greater than \qquad thousand.'	-

	100 and 1,000). - Solve number problems and practical problems that involve all of the above. - Read Roman numerals to 1,000 (M) and recognise years written in Roman numerals			
$\begin{gathered} \text { Place value } \\ \text { within } \\ \text { 1,000,000 } \\ \text { (approximately } \\ 6 \text { days) } \end{gathered}$	- Read, write, order and compare numbers to at least 1,000,000 and determine the value of each digit. - Solve number problems and practical problems that involve all of the above. - Round any number up to the nearest 10, 100, 1,000 and 100,000. - Interpret negative numbers in context, count forwards and	- Power Maths unit 2 ones (Is) tens (10s) hundreds (100s) thousands (1,000s) ten thousands ($10,000 \mathrm{~s}$) hundred thousands ($100,000 \mathrm{~s}$) million $(1,000,000)$ round order ascending descending	Spine 1 - 1.26 composition and calculation multiples of 1,000 up to 1,000,000 \qquad \qquad is less than \qquad , so \qquad thousand is less than \qquad thousand.' \qquad is greater than \qquad so \qquad thousand is greater than \qquad thousand.' - 1.27 negative numbers: counting, comparing and calculating 'Negative numbers are below zero.' 'Negative numbers are less than zero.' 'Positive numbers are above zero.' 'Positive numbers are greater than zero.'	-

	backwards with positive and negative whole numbers, including through zero - Count forwards or backwards in steps of powers of 10 for any given number up to 1,000,000. - Solve number problems and practical problems that involve all of the above.			
Addition and Subtracton (duration approximatel y 12 days)	- Add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction). - Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy. - Add and subtract numbers	- Power IVaths Unit 3 add subtract ones (Is) hundreds (100s) thousands (1,000s) ten thousands (10,000s) mentally inverse round estimate distance chart	Spine 1 1.28 common structures and the part-part-whole relationships 1.29 using equivalence and the compensation property 'I've added \qquad to the minuend (subtrahend), so I need to add \qquad to the subtrahend (minuend) to keep the difference the same.' 'I've subtracted \qquad from the minuend (subtrahend), so I need to subtract ___ from the subtrahend (minuend) to keep the difference the same.' to calculate	\bullet

	mentally with increasingly large numbers - Solve addition and subtraction multi-step. problems in contexts, which operations and methods to use and why.		'I've subtracted \qquad from one addend, so I need to add \qquad to the other addend to keep the sum the same.' 'I've added \qquad to one addend, so I need to subtract \qquad from the other addend to keep the sum the same.' 'The sum has increased by \qquad ; one addend has stayed the same, so the other addend must increase by .' \qquad 'The sum has decreased by \qquad ; one addend has stayed the same, so the other addend must decrease by \qquad .'	
Multiplication and Division Multiples (approximately 10 days)	- Identity multiples and factors, including tinding al of a number, and common factors of two numbers. - Solve problems involving multiplicatio nand division including using their knowledge of factors and multiples, squares and cubes.	- Power IVatns Unit 4	Spine 2 2.18 Using equivalence to calculate 'If I multiply one factor by three, I must divide the other factor by three for the product to stay the same.' 'If I multiply the dividend by \qquad , I must multiply the divisor by \qquad for the quotient to stay the same.' 2.19 Calculation: multiply and divide decimal fractions by whole numbers	- $\mathrm{SNF}-1$ Secure fluency in multiplication table facts, and correspondin g division thrs, conting practice. - 5NF-2 Apply place-value known additive and multiplicative number acts by 1 tenth or 1 hundredth). - 5MD-1 Multiply and divide numbers by 10 and 100;

- Know and
use the vocabulary
of prime
numbers,
prime
factors and
composite
(non-prime)
numbers.
- Solve
problems
involving
multiplicatio
n and
division
including
using their
knowledge
of factors
and
multiples,
squares and
cubes.
- Recognise
and use
square
numbers
and cube
numbers, and the notation for
squared (2
and cubed 3
.
- Multiply and divide whole numbers and those involving decimals by 10, 100 and 1,000..

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& \& 'There are \(\qquad\) tiles. There are \(\qquad\) rows and \(\qquad\) columns. So \(\qquad\) and \(\qquad\) are factors of \(\qquad\) .
\(\qquad\) is a factor of \(\qquad\) because
\(\qquad\) \(\times\) \(\qquad\) = \(\qquad\) .
\(\qquad\) is a multiple of \(\qquad\) because
\(\qquad\) \(\times\) __ \(=\) \(\qquad\)
\(\qquad\) is a factor of \(\qquad\) because
\(\qquad\) \(\div \ldots=\) \(\qquad\)
\(\qquad\) is a multiple of \(\qquad\) because
\(\qquad\) \(\div \ldots=\) \(\qquad\) \& areas and calculate the area of rectangles (including squares) using standard units. \\
\hline Fractions (approximately 8 days) \& \begin{tabular}{l}
- Identity, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths. \\
- Recognise mixed numbers and improper fractions and convert from one form to the other and write mathematic al statements > 1 as a mixed number (for example, 25 \(+45=65=\) 115). \\
- Compare and order
\end{tabular} \& \begin{tabular}{l}
- Power Maths unit 5 \\
equivalent \\
numerator \\
denominator \\
whole \\
fraction \\
improper fraction \\
mixed number \\
convert \\
order \\
greater than (>) \\
less than (<) \\
is equal to (=)
\end{tabular} \& \begin{tabular}{l}
Spine 3 \\
3.7 finding equivalent fractions and simplifying fractions \\
Repeat the stem sentence: 'The whole is divided into \(\qquad\) equal parts and we have \(\qquad\) of those parts.' \\
'The numerator has been scaled up/ down by \(\qquad\) .' \\
'The denominator has been scaled up/down by \(\qquad\) .' \\
'These fractions are/are not equivalent.'
\(\square\) , \\
is equivalent to
\(\square\)

\square
\end{tabular} \& - 5F-2 Find equivalent fractions and understand that they have the same value and the șame position in the linear number system.

\hline
\end{tabular}

	fractions whose denominato rs are all multiples of the same number.			
Fractions (approximately 11 days)	- Add and subtract fractions with the same denominato rand denominato rs that are multiples of the same number - Recognise mixed numbers and improper fractions and convert from one form to the other and write mathematic al statements > 1 as a mixed number (for example, 25 $+45=65=$ 115).	Power Maths unit 6	Spine 3 3.8 Common denomination: more adding and subtracting from step 1:8 to support this: " \qquad and \qquad are related fractions because the denominator, "__", is a multiple of the other denominator, ". \qquad "'	5NPV-4 Divide 1 into 2, 4, 5 and 10 equal parts, and read scales/numb er lines marked in units of 1 with 2, 4, 5 and 10 equal parts. - 5F-1 Find non-unit fractions of quantities.

BILSTON CHURCH OF ENGLAND PRIMARY
MEDIUM TERM PLANNING

Subject	Year Group	Term

Maths	5	Spring

Topic	- National Curriculum Objectives	Power IVaths Unit	- NCEIM Protessional development documents	- Ready to Progress Criteria
Geometry Properties of Shapes (approximately 1 week)	- Know angles are measured in degrees: estimate and compare acute, obtuse and refflex angles. - Identifyangles at a point and one whole turn (total 360°) angles at a point on a straight line and 12 a turn (total 180°) other multiples of 90°. - Know angles are measured in degrees: estimate and compare acute, obtuse and réflex angles. - Draw given angles, and measure them in degrees (${ }^{\circ}$). - Use the properties of rectangles to deduce related facts and find missing lengths and angles.	- Power Maths unit 13 degrees (${ }^{\circ}$) interior angle clockwise anticlockwise orientation	\bullet	- 5G-1 Compare angles, estimate and measure angles in degrees (${ }^{\circ}$) and draw angles of a given size.
Multiplication	- Multiply numbers up to 4 digits by a	- Power Maths unit 7	Spine 2	-

And Division (approximately 10 days)	oneor twodigit number using a formal written method, including long multiplication for two-digit numbers. - Multiply and divide numbers mentally drawing upon known facts. - Divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context.	multiply divide add subtract place value partition equal multiple remainder sum total	2.18 Using equivalence to calculate 'IfI multiply one factor by three, I must divide the other factor by three for the product to stay the same.' 'If I multiply the dividend by \qquad ,I must multiply the divisor by \qquad for the quotient to stay the same.' 2.22 Combining multiplication with addition and subtraction	
Fractions (approximately 8 days)	- Recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements > 1 as a mixed number (for example, $25+$ $45=65=11$ 5). - Multiply proper fractions and mixed numbers by whole numbers, supported by	- Power Maths unit 8 improper fraction mixed number whole(s) equal parts divide fraction of an amount operator numerator denominator convert	Spine 3 - 3.8 Common denomination: more adding and subtracting \qquad are related fractions because the denominator, " \qquad ", is a multiple of the other denominator, " \qquad ".' eaten: 'The whole is divided into \qquad equal parts, and we have eaten \qquad of them.'	\bullet

	materials and diagrams - Multiply proper tractions and mixed numbers by whole numbers, supported by materials and diagrams.			
Decimals and Percentages (approximately 15 days)	- Read, write, order and compare numbers with up to three decimal places. -. Read and write decimal numbers as fractions (for example, 0.71 $=71$ 100'). - Round decimals with two decimal places to the nearest whole number and to one decimal place. - Recognise the per cent symbol (\%) and understand that per cent relates to 'number of parts per, hundred', and write percentages as a fraction with denominator 100 , and as a decimal. - Solve problems which require knowing percentage and decimal	Power Maths unit 9		- 5NPV-1 10 tenths are equivalent to 1 one, and that 1 is 10 times the size of 0.1. Know that 100 hundredths are equivalent to 1 one, and that 1 is 100 times 0.01. Know that 10 hundredths are equivalent to 1 tenth, and that 0.1 is 10 times the size of 0.01. - 5NPV-2 Recognise the place value of each digit in numbers with up to 2 decimal places, and compose and decompose

	equivalentsot $12,14,15,2$ 5,45 and those fractions with a denominator of a multiple of 10 or 25.		With up to 2 decimal standard and nonstandard partitioning. - 5NPV-3 Reason about the location of any number with up to 2 decimals places in the number system, including identifying the previous and next multiple of 1 roundind the nearest of each. -5F-3 Recall decimal fraction equivalents 1/5 1/2, 1/4, $1 / 10$, and for multiples of these proper
$\begin{gathered} \text { Measure } \\ \text { Area and } \\ \text { Perimeter } \\ \text { (duration } \\ \text { approximately } \\ \text { 8days) } \end{gathered}$	- Measure and perimeter of composite rectilinear shapes in centimetres and metres. - Calculate and compare the rectangles (including squares), and	- Power Maths Unit 10	-

including using standard units, square centimetres (cm2) and square metres (m2) and estimate the area of irregular shapes.			
			\bullet

Subject	Year Group	Term
Maths	5	Summer

Topic	- National Curriculum Objectives	- Power Maths Unit	- NCETM Protessional development documents	- Ready to Progress Criteria
Graphs and tables (duration approximatel y 6 days)	- Complete, read and interpret information in tables, including timetables. - Solve comparison, sum and difference problems using information presented in a line graph.	- Power Maths Unit 11	\bullet	-
Decimals (approximatel y 2 weeks)	- Solve problems involving number up to three decimal places. - Read, write, order and compare numbers with up to three decimal places. - Solve problems involving number up to three decimal places. - Recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents.		Spine 2 2.19 Calculation: multiplication and division decimal fractions by whole numbers , \qquad times \qquad ones is equal to \qquad ones, so \qquad times \qquad tenths is equal to \qquad tenths.' \qquad is is one-tenth the size of \qquad so \qquad times \qquad is one-tenth the size of \qquad times \qquad ,' \qquad \qquad is one-h of \qquad , 50 \qquad times \qquad he size of \qquad times .' \qquad	\bullet

	- Vlultiply and divide whole numbers and those involving decimals by 10, 100 and 1,000.			
			\bullet	\bullet
Geometry Properties of Shapes (approximatel y 2 weeks)	- Distinguish between regular and irregular polygons based on reasoning about equal sides and angles. - Identify 3D shapes, including cubes and other cuboids, from 2D representations - Identify - angles at a point and one whole turn (total 360°) angles at a point on a straight line and 12 a turn (total 180°) other multiples of 90°. - Use the properties of rectangles to deduce related facts and find missing lengths and angles.	- Power Maths unit 14	\bullet	\bullet

Geometry Position and Direction (approximatel y 1 week)	- Identity, describe and represent the position of a shape following a reflection or translation, using the appropriate anguage, and know that the shape has not changed.	- Power Maths unit 15	\bullet	\bullet
Measure Converting units (approximatel y 8 days)	- Convert between different units of metric measure (for example, kilometre and metre; centimetre and metre; centimetre and millimetre; gram and kilogram; litre and millilitre). - Use all four operations to solve problems involving measure (for example, length, mass, volume, money) using decimal notation, including scaling. - Use all four operations to solve problems involving measure (for example, length, mass, volume, money) using	Power Maths unit 16		5NPV-5 Convert between units of measure íncluding using common decimals and fractions

	notation, including scaling. - Understand and use approximate equivalences between metric units and common imperial units such as inches, pounds and pints. - Solve problems involving converting between units of time. - Complete, read and interpret information in tables, including timetables.			
Measure Volume and Capacity (approximatel y 1 week)	- Estımate volume (for example, using $1 \mathrm{cm3}$ blocks to build cuboids (including cubes)) and capacity (for example, using water).	Power Maths Unit 1/ olume \quad cube cuboid \quad 3D shape solid estimate capacity \quad unit cubes least	Spine 2 2.20 Multiplication with three factors and volume 'This layer has \qquad rows of cubes.' 'There are \qquad $1 \mathrm{~cm}^{3}$ cubes in this layer.' 'This layer has a volume of \qquad cm ${ }^{3} .^{\prime}$ 'There are \qquad layers of \qquad cm^{3}. 'The volume of the cuboid is \qquad cm ${ }^{3}$.'	

