BILSTON CHURCH OF ENGLAND PRIMARY

MEDIUM TERM PLANNING

Subject	Year Group	Term
Maths	4	Autumn

Topic	National Curriculum Objectives	Power Maths Unit	NCETM Professional development documents	Ready to Progress criteria
Number and Place Value (approximat e duration 8 days)	- Recognise the place value of each digit in a four-digit number (thousands, hundreds, tens, and ones). - Round any number to the nearest 10, 100 or 1,000. - Count in multiples of and 1,000. - Identify, represent and estimate numbers using different representatio ns. - Order and compare	- Power Maths Unit 1 tens hundreds thousands partition place value number line multiples digit	Spine 1 1.22 composition and calculation: 1,000 and four digit numbers \qquad hundred plus __ hundred is equal to \qquad hundred.' 'We know there are ten hundreds in one thousand, so __ hundred plus \qquad hundred is equal to thousand __ hundred.' 'We know there are ten hundreds in one thousand, so \qquad thousand \qquad hundred is equal to \qquad hundred.' \qquad hund \qquad hundred.' 'a is between \qquad and .' \qquad 'The previous multiple of one thousand is \qquad The next multiple of one thousand is .' \qquad 'a is nearest to \qquad thousand.' 'a is \qquad when rounded to the nearest thousand.'	4NPV-1 know that 10 hundreds are equivalent to 1 thousand, and that 1,000 is 10 times the size of $100 ;$ apply this to identify and work out how many 100s there are in other four-digit multiples of 100. - 4NPV-1 Know that 10 hundreds are equivalent to 1 thousand,

	numbers beyond			and that 1,000 is 10 times the size of $100 ;$ apply this to identify and work out how many 100s there are in other four-digit multiples of 100. 4NPV-2 Recognise the place value of each digit in four-digit numbers, and compose and decompose fourdigit numbers using standard and ñonstandar d partitioning. 4NPV-3 Reason about the location of any four digit number in the linear number system, including identifying the previous and next multiple of 1,000 and 100 and rounding to

				the nearest of each. 4NPV-4 Divide 1,000 into 2,4, 5 and 10 equal parts, and read scales/num ber lines. marked in multiples of 1,000 with 2,4,5 and 10 equal parts
Place value (approximat e duration 8 days)	- Find 1,000 more or less than a given number. - Solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why. - Order and compare numbers 1,000. - Identify, represent and estimate numbers ysing different representatio ns. - Round any number to 10,100 or 1,000.		Spine 1 1.22 composition and calculation: 1000 and four digit numbers 'We know there are ten hundreds in one thousand, so \qquad thousand \qquad hundred is equal to \qquad hundred.' \qquad hundred minus \qquad hundred is equal to \qquad hundred.' 'a is between \qquad and .$^{\prime}$ \qquad 'The previous multiple of one thousandis \qquad The next multiple of one thousand is \qquad .' ' a is nearest to \qquad thousand.' 'a is ___ when rounded to the nearest thousand.' $\begin{aligned} & \text { '__ hundred plus__ hundred is } \\ & \text { equal to _hundred.' } \\ & \text { 'We know there are ten hundreds in } \\ & \text { one thousand, so _ hundred plus } \\ & \text { thousand___ hundred is equal to_-_ } \end{aligned}$	- NPV-1 10 hundreds are equivalent to 1 thousand, and that 1,000 is 10 times the size of $100 ;$ apply this to work out how many 100s there are in other four-digit multiples of 100. 4NPV-3 Reason about the location of any four digit number in the linear number system, including identifying the

	- Solve number and practical problems that involve all of the above and with increasingly large positive numbers. - Count in multiples of 6, 7, 9,25 and 1,000. - Count backwards through zero to include negative numbers.			previous and next multiple of 1,000 and 100, and rounding to the nearest of each. - 4NPV-4 Divide 1,000 into 2,4, 5 and 10 equal parts, and read scales/num ber lines marked in multiples of 1,000 with 2,4, 5 and 10 equal parts
Addition and Subtraction (approximat e duration 16 days)	- Add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate. -. Round any number to the nearest 10, 100 or 1,000. - Estimate and use inverse operations to check answers to a calculation. - Solve addition and subtraction two-step	- Power Maths Unit 3 addition total more than subtraction less than column method estimate how much strategy efficient accurate exact fact (approximate duration 16 days)	Spine 1 1.22 composition and calculation: 1000 and four digit numbers 'a is between \qquad and \qquad .' 'The previous multiple of one thousand is \qquad . The next multiple of one thousand is \qquad .' 'a is nearest to \qquad thousand.' 'a is \qquad when rounded to the nearest thousand.'	- 4NF-3 Apply placevalue knowledge to known additive and multiplicativ e number facts (scaling facts by 100)

	problems in contexts, deciding which operations and methods to use and why.			
Measure Area (approximat e duration 5 days)	- Find the area of rectilinear shapes by counting squares - Estimate, compare and calculate different measures, including money in pounds and pence.	- Power Maths unit 4 space area rectangle square rectilinear shape unit larger greater smaller	Spine 2 2.16 Multiplicative contexts: area and perimeter 1 Use this stem sentence to introduce the term 'perimeter': 'The distance around the edge of the \qquad is its perimeter.' 'The perimeter of the \qquad is \qquad cm.' 'This shape has an area of \qquad square units.' 2.17 Structures: using measures and comparison to understand scaling Summarise the relationship between the two lengths using the following stem sentence: 'The \qquad is \qquad times the length of the \qquad .' \qquad m multiplied by \qquad is equal to \qquad .' \qquad is times the size of . \qquad	\bullet
Multiplicati on and Division (approximat duration 12 days)	- Recall multiplicatio nand division facts for multiplicatio n tables up to 12×12. - Use place value, known	- Power Maths Unit 5	Spine 2 2.9 Times tables: 7 and patterns within/across times tables	- 4NF-1 Recall multiplicati on and division facts up to 12×12, and recognise products in multiplicati

MEDIUM TERM PLANNING

Subject	Year Group	Term
Maths	4	Spring

Topic	- National Curriculum Objectives	Power Maths Unit	- NCEIM Protessional development documents	- Ready to Progress critèria
Geometry Angles and 2d shapes duration approximatel y 5 days)	Identify acute and obtuse angles and compare and order angles up to two right angles by size. Compare and classify geometric şhapes, including quadrilaterals and triangles, based on		\bullet	4G-2 Identify regular polygons, inclưding equilateral triangles and squares, as those in which the side-lengths are equal and the angles are equal. Find the

	their properties and sizes. Identify lines of symmetry in 2D shapes different orientations. - Complete a simple symmetric figure with respect to a specific line of symmetry			perımeter of regular and irregular polygons. 4G-3 Identify line symmetry in presented in different orientations . Reflect shapes in a line of symmetry and complete a symmetric figure or pattern with respect to a specified line of symmetry.
Multiplication And Division (approximate duration 16 days)	- Solve problems involving multiplying and adding, including using the distributive law to multiply twodigit numbers by one digit, integer scaling problems and harder corresponden ce problems such as n objects are connected to m objects. - Multiply twodigit and three-digit numbers by a	- Power Maths unit 6 multiply divide times-tables remainder bar model factor pair factors	Spine 2 2.9 Times tables: 7 and patterns within/across times tables 2.10 Connecting multiplication and division and the distributive law \qquad times \qquad is equal to \qquad times \qquad .' 'The product of \qquad and \qquad is equal to the product of \qquad and \qquad is \qquad qual to \qquad plus \qquad , so \qquad times \qquad is equa ual to to times \qquad plus \qquad times \qquad .' \qquad is equal to \qquad minus \qquad so \qquad times \qquad is is equal to \qquad times \qquad minus \qquad times .${ }^{\prime}$ \qquad 2.11 Times tables 11 and 12	4NF-2 Solve division problems, with twodigit dividends and onedigit divisors that involve remainders, and interpret remainders appropriatel y according to the context. 4NF-3 Apply placevalue knowledge to known additive and multiplicativ e number facts

			\qquad is a multiple of \qquad , so when it is divided into groups of \qquad there are none left over; there is no remainder.' \qquad is not a multiple of \qquad , so when it is divided into groups of \qquad there are some left over; there is a remainder.' 'For every one pencil of Emily's, Jamie has ten.' 'Think of \qquad and make it ten times the size.' 'Think of \qquad and multiply by ten.' \qquad multiplied by ten is equal to \qquad . \qquad is ten times the size of \qquad .' \qquad pencils is ten times as many as \qquad pencils. Jamie has \qquad pencils.' \qquad multiplied by one hundred is equal to \qquad .' \qquad is one hundred times the size of \qquad .'	

			2.14 Multiplication: partitioning leading to short multiplication Remind children of the stem sentence from step 1:4: 'If there are ten or more tens, we must regroup the tens into hundreds and tens.' equal to \qquad .' \qquad is one hundred times the size of \qquad .' \qquad people is one hundred times as many as \qquad people. There are \qquad people in the cinema this evening.' 2.15 Division: partitioning leading to short division 2.17 Structures: using measures and comparison to understand scaling \qquad multiplied by \qquad is equal to -. \qquad is \qquad times the size of .' \qquad \qquad ${ }^{\prime}$ Adapt the stem sentence from Teaching points 1 and 2: 'The \qquad is \qquad times the mass of the \qquad .' , \qquad multiplied by \qquad is equal to \square , \qquad divided by \qquad is equal to \qquad , , \qquad is \qquad times the size of \qquad .'	

Measure Measure (perimeter) (duration approximatel y 6 days)	- Convert between different units of measure (for example, kilometre to metre; hour to minute). - Measure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres.	Power IVaths Unit / length width perimeter distance rectangle square rectilinear shape centimetre (cm) metre (m) kilometre (km) equivalent to regular polygon		4G-2 Identify regular polygons, inclưding equilateral triangles and squares, as those in which the side-lengths are equal and the angles are equal. Find the perimeter of regular and irregular polygons.
Fractions (duration approximat ely 9 days)	- Count up and down in hundredths; recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten. - Recognise and show, using diagrams, families of common equivalent fractions. - Solve problems involving increasingly harder fractions to calculate quantities, and fractions	- Power Maths unit 8 mixed number improper fraction numerator denominator fraction equivalent simplify simplest fraction	Spine 3 3.5 working across one whole: improper fractions and mixed numbers	4F-1 Reason about the location of mixed numbers in the linear number system. - 4F-2 Convert mixed numbers to improper fractions and vice versa.

	to divide quantities, including non-unit fractions where the answer is a whole number.		this: 'Each interval on the line is divided into \qquad equal parts. This allows us to count in \qquad .' 'The parts are \qquad and \qquad .Thetotal or whole, is \qquad .' For example: 'The parts are $\frac{2}{5}$ and $1 \frac{1}{5}$. The totalor whole is $1 \frac{3}{5}$.' There are \qquad groups offour-quarters which is \qquad -quarters, and \qquad more quarters, so that is \qquad -quarters.' 'The denominator is \qquad . This means that each whole has been split into \qquad equal parts. \qquad parts make each whole.' 'The numerator is \qquad .The means there are \qquad equal parts.' 'It is possible to make \qquad full groups of \qquad -quarters and there are \qquad more quarters.'	
Fractions (duration approximatel y 8 days)	- Solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number. - Add and subtract	- Power Maths unit 9 numerator denominator add subtract improper fraction mixed number fraction of an amount	Spine 3 3.6 multiplying whole numbers and fractions \qquad lot(s) of \qquad is equal to \qquad .' 'The whole is divided into \qquad equal parts.' 'Each part is \qquad of the whole.'	- 4F-3 Add and subtract improper and mixed fractions with the same denominato r, including bridging whole numbers

	tractions with the same denominator.		\square 1 of the whole; \square 1 of \qquad apples is \qquad apples.	
Decimals (duration approximatel y 12 days)	- Recognise and write decimal equivalents of any number of tenths or hundredths. - Solve simple measure and money problems involving fractions and decimals to two decimal places - Find the effect of dividing a one- or twodigit number by 10 and 100, identifying the value of the digits in the answer as ones, tenths and hundredths. - Count up and down in hundredths; recognise that hundredths arise when dividing an object by one hundred and	- Power Maths unit 10	Spine 1 1.23 Composition and calculation:tenths \qquad tenths plus \qquad tenths is equal to ten tenths, which is equal to one.' 'One is equal to ten tenths; ten tenths minus \qquad tenths is equal to \qquad tenths.' \qquad is between \qquad and \qquad .' \qquad is the previous whole number.' \qquad is the next whole number.' Extend the stem sentences from the previous step to include the closest whole number: ${ }^{\prime}$ \qquad is the closest whole number.'	\bullet

| | dividing
 tenths by ten. | Composition and
 calculation:hundredths and
 thousandths | |
| :--- | :--- | :--- | :--- | :--- |

BILSTON CHURCH OF ENGLAND PRIMARY

MEDIUM TERM PLANNING

Subject	Year Group	Term
Maths	4	Summer

Topic	- National Curriculum Objectives	Power Maths Unit	- NCEIM Protessional development documents	- Ready to Progress criteria
Decimals (duration approximatel y 12 days)	- Recognise and write decimal equivalents of any number of tenths or hundredths. - Solve simple measure and money problems involving fractions and decimals to two decimal places - Find the effect of dividing a	- Power Maths unit 10	Spine 1 1.23 Composition and calculation:tenths	-

	one- or twodigit number by 10 and 100, identifying the value of the digits in the answer as ones, tenths and hundredths. - Count up and down in hundredths; recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten.		\qquad tenths plus \qquad tenths is equal to ten tenths, which is equal to one. 'One is equal to ten tenths; ten tenths minus \qquad tenths is equal to \qquad tenths.' \qquad is between \qquad and \qquad .' \qquad is the previous whole number.' \qquad is the next whole number.' Extend the stem sentences from the previous step to include the closest whole number: ' \qquad is the closest whole number.' - Composition and calculation:hundredths and thousandths
Decimals duration approximatel y 8 days)	- Add and subtract fractions with the same denominato r. - Recognise and write decimal equivalents of any number of tenths or hundredths. - Find the effect of dividing a one- or twodigit number by 10 and 100, identifying the value of the digits in the answer		Spine 1 1.23 Composition and calculation:tenths \qquad tenths plus \qquad tenths is equal to ten tenths, which is equal to one.' 'One is equal to ten tenths; ten tenths minus \qquad tenths is equal to \qquad tenths.' \qquad is between \qquad and \qquad .' \qquad is the previous whole number.' \qquad is the next whole number.'

as ones,
tenths and hundredths.

- Compare numbers with the
same
number of
decimal
places up to
two decimal
places.
- Round decimals with one decimal place to the
nearest
whole
number
- Recognise
and write
decimal
equivalents
to 14, 12
and 34
- Solve simple
measure and money
problems
involving
fractions
and
decimals to
two decimal places.
- 1.24Composition and calculation:hundredths and thousandths
_ is ten times bigger than
is ten times smaller than/one tenth the size of ._.
is one hundred times bigger than
_ is one hundred times smaller than/one hundredth the size of __.'
say \qquad but I think and hundredth(s).'
,__ hundredths plus \qquad
hundredths is equal to ten
hundredths, which is equal to one tenth.'
'One tenth is equal to ten hundredths; ten hundredths minus hundredths is equal to
hundredths.'

Measure Money duration approximatel y 5 days)	- Solve simple measure and money problems involving fractions and decimals to two decimal places. - Estimate, compare and calculate different measures, including money in pounds and pence. - Solve simple measure and money problems involving fractions and decimals to two decimal places.	- Power IVaths unit 12	Spine 1 - 1.25 Addition and Subtraction:money 'First we add: \qquad plus \qquad is equal to \qquad ...' '...then we adjust: \qquad minus \qquad is equal to \qquad .' 'One pound is equal to ten groups of ten pence.' 'Ten pence is equal to ten pennies.'	\bullet
Measure Time duration approximatel y 6 days)	- Convert between different units of measure (for example, kilometre to metre; hour to minute). - Read, write and convert time between analogue and digital 12-and 24hour clocks. - Solve problems involving	- Power Maths unit 13 convert compare units of time seconds minutes hours days weeks months years 12-hour 24-hour analogue digital am/pm	\bullet	\bullet

18

	converting from hours to minutes; minutes to seconds; years to months; weeks to days.				
Statistics duration approximatel y 5 days)	-Interpret and present discrete and continuous data using appropriate graphical methods, including bar charts and time graphs. -Solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs.	Power Maths unit 15 data line graph bar chart table more than greatest continuous data	pictogram ltogether smallest ompare		
Geometry Position and Direction duration approximatel y 8 days)	Describe positions on a 2D grid as coordinates in the first quadrant. Plot specified points and draw sides to complete	Power Maths unit 16			4G-1 Draw polygons, specified by coordinate s in the first quadrant, and translate within the

